1. Xu JJ, Li YL, Jia JB, Xiong WJ, Zhong CC, Huang GY, Gou XH, Meng YL, and Shan WX. (2022). Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Frontiers in Microbiology, 13. DOI:10.3389/fmicb.2022.856106.[PDF].
  2. Gou XH, Zhong CC, Zhang PL, Mi LR, Li YL, Lu WQ, Zheng J, Xu JJ, Meng YL, and Shan WX. (2022). miR398b and AtC2GnT form a negative feedback loop to regulate Arabidopsis thaliana resistance against Phytophthora parasitica. Plant Journal. DOI:10.1111/tpj.15792.[PDF].
  3. Lan XJ, Wang XX, Tao QD, Zhang HT, Li JY, Meng YL, and Shan WX. (2022). Activation of the VQ motif-containing protein gene VQ28 compromised nonhost resistance of Arabidopsis thaliana to Phytophthora pathogens. Plants, 11(7): 858. [PDF].
  4. Yang Y, Zhao Y, Zhang YQ, Niu LH, Li WY, Lu WQ, Li JF, Schafer P, Meng YL, and Shan WX. (2022). A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. Plant Cell, 34(6): 2343-2363.[PDF].
  5. Li JF, Deng FY, Wang HM, Qiang XY, Meng YL, and Shan WX. (2021). The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2. Molecular Plant Pathology, 23(4): 530-542.[PDF].
  6. Yang Y and Shan WX. (2021). Quantitative Analysis of RNA Editing at Specific Sites in Plant Mitochondria or Chloroplasts Using DNA Sequencing. Bio-protocol, 11(18): e4154.[PDF].
  7. Qiang XY, Liu XS, Wang XX, Zheng Q, Kang LJ, Gao XX, Wei YS, Wu WJ, Zhao H, and Shan WX. (2021). Susceptibility factor RTP1 negatively regulates Phytophthora parasitica resistance via modulating UPR regulators bZIP60 and bZIP28. Plant Physiology, 186(2): 1269-1287.[PDF].
  8. Cui BM, Ma XR, Li Y, Zhou Y, Ju XY, Hussain A, Umbreen S, Yuan B, Tabassum A, Lubega J, Shan WX, and Loake GJ, Pan QN. (2021). Perturbations in nitric oxide homeostasis promote Arabidopsis disease susceptibility towards Phytophthora parasitica. Molecular Plant Pathology, 22(9): 1134-1148.[PDF].
  9. Zhang HX, Li FF, Li ZZ, Cheng J, Chen XK, Wang QH, Joosten MHAJ, Shan WX, and Du Y. (2021).Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology, 22(6): 644-657.[PDF].
  10. Wen QJ, Sun ML, Kong XL, Yang Y, Zhang Q, Huang GY, Lu WQ, Li WY, Meng YL, and Shan WX. (2021). The novel peptide NbPPI1 identified from Nicotiana benthamiana triggers immune responses and enhances resistance against Phytophthora pathogens. Journal of Integrative Plant Biology. 63(5): 961-976. [PDF].
  11. Yang Y, Fan GJ, Zhao Y, Wen QJ, Wu P, Meng YL, and Shan WX. (2020). Cytidine-to-Uridine RNA editing factor NbMORF8 negatively regulates plant immunity to Phytophthora pathogens. Plant Physiology. 184(4): 2182-2198.[PDF].
  12. Du Y, Chen XK, Guo YL, Zhang XJ, Zhang XJ, Zhang HX, Li FF, Huang GY, Meng YL, and Shan WX. (2021). Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytologist. 229(1): 501-515. [PDF].
  13. Lu WQ, Deng FY, Jia JJ, Chen XK, Li JF, Wen Qj, Li TT, Meng YL, and Shan WX. (2020). The Arabidopsis thaliana gene AtERF019 negatively regulates plant resistance to Phytophthora parasitica by suppressing PAMP-triggered immunity. Molecular Plant Pathology, 21(9): 1179-1193. [PDF].
  14. Zhang Q, Li WW, Yang JP, Xu JJ, Meng YL, and Shan WX. (2020). Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. Molecular Plant Pathology, 21(4): 541-554. [PDF].
  15. Elnahal Ahmed S M, Li JY, Wang XX, Zhou CY, Wen GH, Wang J, Lindqvist-Kreuze H, Meng YL, and Shan WX. (2020). Identification of natural resistance mediated by recognition of Phytophthora infestans> effector gene Avr3aEM in potato. Frontiers in Plant Science, 11: 919. [PDF].
  16. Li WW, Zhao D, Dong JW, Kong XL, Zhang Q, Li TT, Meng YL, and Shan WX. (2020). AtRTP5 negatively regulates plant resistance to Phytophthora pathogens by modulating the biosynthesis of endogenous jasmonic acid and salicylic acid. Molecular Plant Pathology, 21(1): 95-108. [PDF].
  17. Li TT, Wang QH, Feng RR, Li LC, Ding LW, Fan GJ, Li WW, Du Y, Zhang MX, Huang GY, Schafer P, Meng YL, Tyler BM, and Shan WX. (2019). Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a‐like effectors. New Phytologist.[PDF].
  18. Zhang Q, Feng RR, Zheng Q, Li JY, Liu ZR, Zhao D, Meng YL, Tian YE, Li WW, Ma XW, Wang S, and Shan WX. (2019). Population genetic analysis of Phytophthora parasitica from tobacco in Chongqing, Southwestern China. Plant Disease, 103:2599-2605. [PDF]
  19. Zhong CC, Smith NA, Zhang D, Goodfellow S, Zhang R, Shan WX, and Wang MB. (2019). Full-length hairpin RNA accumulates at gigh levels in yeast but not in bacteria and plants. Genes, 10:458. [PDF]
  20. Wang QH, Li TT, Zhong CC, Luo SZ, Xu K, Gu B, Meng YL, Tyler BM, and Shan WX. (2019). Small RNAs generated by bidirectional transcription mediate silencing of RXLR effector genes in the oomycete Phytophthora sojae. Phytopathology Research, 1:18. [PDF]
  21. Huang GY, Liu ZR, Gu B, Zhao H, Jia JB, Fan GJ, Meng YL, Du Y, and Shan WX. (2019). An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20:356-371. [PDF]
  22. Cui BM, Pan QN, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan WX, Jiang JH, and Loake GJ. (2018). S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nature Communications, 9:4226. [PDF]
  23. Fan GJ, Yang Y, Li TT, Lu WQ, Du Y, Qiang XY, Wen QJ, and Shan WX. (2018). A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulum-mediated immunity. Molecular Plant, 11:1067–1083. [PDF]
  24. Yin JL, Gu B, Huang GY, Tian YE, Quan JL, Lindqvist-Kreuze H, and Shan WX. (2017). Conserved RXLR effector genes of Phytophthora infestans expressed at the early stage of potato infection are suppressive to host defense. Frontiers in Plant Science, 8:2155. [PDF]
  25. Jia JB, Lu WQ, Zhong CC, Zhou R, Xu JJ, Liu W, Gou XH, Wang QH, Yin JL, Xu C, and Shan WX. (2017). The 25–26 nt small RNAs in Phytophthora parasitica are associated with efficient silencing of homologous endogenous genes. Frontiers in Microbiology, 8:773. [PDF]
  26. Wang QH, Li TT, Xu K, Zhang W, Wang XL, Quan JL, Jin WB, Zhang MX, Fan GJ, Wang MB, and Shan WX. (2016). The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Frontiers in Plant Science, 7:1938. [PDF]
  27. Pan QN, Cui BM, Deng FY, Quan JL, Loake G, and Shan WX. (2016). RTP1 encodes a novel ER-localized protein in Arabidopsis and negatively regulates resistance against biotrophic pathogens. New Phytologist, 209:1641-1654. [PDF]
  28. Tian YE, Yin JL, Sun JP, Li HP, Ma YF, Wang QH, Quan JL, and Shan WX. (2016). Population genetic analysis of Phytophthora infestans in northwestern China. Plant Pathology, 65:17-25. [PDF]
  29. Meng YL, Zhang Q, Zhang MX, Gu B, Huang GY, Wang QH, and Shan WX. 2015. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. Frontiers in Plant Science, 6:632. [PDF]
  30. Wang Y, Cordewener JHG, America AHP, Shan WX, Bouwmeester K, and Govers F. (2015). Arabidopsis lectin receptor kinases LecRK-IX.1 and LecRK-IX.2 are functional analogs in regulating Phytophthora resistance and plant cell death. Molecular Plant-Microbe Interactions, 9:1032-1048. [PDF]
  31. Tian YE, Yin JL, Sun JP, Ma HM, Ma YF, Quan JL, and Shan WX. (2015). Population structure of the late blight pathogen Phytophthora infestans in a potato germplasm nursery in two consecutive years. Phytopathology, 105:771-777. [PDF]
  32. Meng YL, Huang YH, Wang QH, Wen QJ, Jia JB, Zhang Q, Huang GY, Quan JL, and Shan WX. (2015). Phenotypic and genetic characterization of resistance in Arabidopsis thaliana to the oomycete pathogen Phytophthora parasitica. Frontiers in Plant Science, 6:378. [PDF]
  33. Tian YE, Sun JP, Li HP, Wang G, Ma YF, Liu DD, Quan JL, and Shan WX. (2015). Dominance of a single clonal lineage in the Phytophthora infestans population from northern Shaanxi, China revealed by genetic and phenotypic diversity analysis. Plant Pathology, 64:200-206. [PDF]
  34. Wang Y, Klaas B, Patrick B, Shan WX, and Govers F. (2014). Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity. Molecular Plant-Microbe Interactions, 27:1390-1402. [PDF]
  35. Meng YL, Zhang Q, Ding W, and Shan WX. (2014). Phytophthora parasitica: a model oomycete plant pathogen. Mycology, 5:43-51. [PDF]
  36. Wang Y, Bouwmeester K, van de Mortel JE, Shan WX, and Govers F. (2013). Induced expression of defense-related genes in Arabidopsis upon infection with Phytophthora capsici. Plant Signaling & Behavior, 8:e24618. [PDF]
  37. Wang Y, Bouwmeester K, van de Mortel JE, Shan WX, and Govers F. (2013). A novel Arabidopsis–oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant, Cell & Environment, 36: 1192-203. [PDF]
  38. Tyler BM, Kale SD, Wang QQ, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen QH, Affeldt KJ, Berthier E, Fischer GJ, Dou DL, Shan WX, Keller NP, Martin F,Rouxel T, and Lawrence CB. (2013). Microbe-independent entry of oomycete RXLR effectors and fungal RXLR-Like effectors into plant and animal cells is specific and reproducible. Molecular Plant-Microbe Interactions, 26:611-616. [PDF]
  39. Zhang MX, Meng YL, Wang QH, Liu DD, Quan JL, Hardham AR, and Shan WX. (2012). PnPMA1, an atypical plasma membrane H+-ATPase, is required for zoospore development in Phytophthora parasitica. Fungal Biology, 116: 1013-1023. [PDF]
  40. Liu J, Luo SZ, Zhang Q, Wang QH, Chen JF, Guo AG, and Shan WX. (2012). Tn5 transposon mutagenesis in Acidovorax citrulli for identification of genes required for pathogenicity on cucumber. Plant Pathology, 61: 364-374. [PDF]
  41. Wu YJ, Du JF, Wang XL, Fang XF, Shan WX, and Liang ZS. (2012) Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.. SCIENCE CHINA Life Sciences, 55: 807-817. [PDF]
  42. Zhang MX, Wang QH, Xu K, Meng YL, Quan JL, and Shan WX. (2011). Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica. PLoS ONE, 6: e28114. [PDF]
  43. Wang Y, Meng YL, Zhang M, Tong XM, Wang QH, Sun YY, Quan JL, Govers F, and Shan WX. (2011). Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Molecular Plant Pathology, 12: 187-201. [PDF]
  44. Wang QQ, Han CZ, Ferreira AO, Yu XL, Ye WW, Tripathy S, Kale SD, Gu B, Sheng YT, Sui YY, Wang XL, Zhang ZG, Cheng BP, Dong SM, Shan WX, Zheng XB, Dou DL, Tyler BM, and Wang YC. (2011). Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell, 23: 2064-2086. [PDF]
  45. Liu TL, Ye WW, Ru YY, Yang XY, Gu B, Tao K, Lu S, Dong SM, Zheng XB, Shan WX, Wang YC, and Dou DL. (2011). Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses. Plant Physiology, 155: 490-501. [PDF]
  46. Gu B, Kale SD, Wang QH, Wang DH, Pan QN, Cao H, Meng YL, Kang ZS, Tyler BM, and Shan WX. (2011). Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS ONE, 6:e27217. [PDF]
  47. Narayan RD, Blackman LM, Shan WX, and Hardham AR. (2010). Phytophthora nicotianae transformants lacking dynein light chain 1 produce non-flagellate zoospores. Fungal Genetics and Biology, 47: 663-671. [PDF]
  48. Kale SD, Gu B, Capelluto DGS, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan WX, and Tyler BM. (2010). External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell, 142:284-295. [PDF]
  49. Gan PHP, Shan WX, Blackman LM, and Hardham AR. (2009). Characterization of cyclophilin-encoding genes in Phytophthora. Molecular Genetics and Genomics, 281: 565-578. [PDF]
  50. Shan WX, Liu J, and Hardham AR. (2006). Phytophthora nicotianae PnPMA1 encodes an atypical plasma membrane H+-ATPase that is functional in yeast and developmentally regulated. Fungal Genetics and Biology, 43: 583-592. [PDF]
  51. Shan WX, Marshall JS, and Hardham AR. (2004). Gene expression in germinated cysts of Phytophthora nicotianae. Molecular Plant Pathology, 5: 317-330. [PDF]
  52. Shan WX, and Hardham AR. (2004). Construction of a bacterial artificial chromosome library, determination of genome size, and characterization of an Hsp70 gene family in Phytophthora nicotianae. Fungal Genetics and Biology, 41: 369-380. [PDF]
  53. Shan WX, Cao M, Dan LU, and Tyler BM. (2004). The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant-Microbe Interactions, 17:394-403. [PDF]
  54. Chamnanpunt J, Shan WX, and Tyler BM. (2001). High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proceedings of the National Academy of Sciences of the United States of America, 98: 14530-14535. [PDF]
  55. 刘秋萍,曹华,姚茂金,马英,邓斌生,单卫星. (2010). 拟南芥与大豆疫霉菌的非寄主互作及一个感病突变体的遗传分析. 植物学报,45(5):548-555. [PDF]
  56. 殷丽华,王秦虎,宁峰,朱晓莹,左豫虎,单卫星. (2010). 大豆疫霉菌一个DNA指纹分析重复序列探针的鉴定.微生物学报,50(4):524-529. [PDF]
  57. 哈霞,胡中慧,王蕾,权军利,单卫星. (2010).大豆疫霉菌的EMS化学诱变. 菌物学报,29(2):222-227. [PDF]